Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 123(6): 64314, 2005 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16122315

RESUMO

The below-threshold region in core-excited O2 is very complex, consisting of a multitude of exchange-split states with mixed molecular orbital-Rydberg character. We have investigated the nature of these intermediate states by resonant Auger spectroscopy. In particular, we have obtained constant-atomic-final-state yield curves for several atomic peaks in the electron decay spectra which are stemming from ultrafast dissociation. The relative intensity of Auger decay leading to atomic final states is considered a signature of the relative weight of the sigma* character. This method allows one to "filter out" intermediate states with dissociative character. Extensive calculations have been performed by multi-reference configuration interaction at different interatomic distances in order to evaluate the potential curves of the core-excited states and propose a qualitative description of the dissociative molecular dynamics. The calculations show that the core-excited states have a relevant admixture of excitations to orbitals with Rydberg character and excitations to the sigma* orbital with different spin couplings. A diabatization of the adiabatic potential curves shows that the coupling between Rydberg and sigma* diabatic states is very different at the different crossing points and ultrafast dissociation occurs more easily on the lowest sigma* diabatic potential curve. As a consequence, the observation of atomic peaks only in the lower-energy region of the absorption curve is well justified.

2.
J Chem Phys ; 122(8): 84306, 2005 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-15836038

RESUMO

Vibrationally resolved spectra have been obtained for the lowest-lying cationic states X (2)B(1), A (2)A(1), and B (2)B(2) of the water molecule reached after participator resonant Auger decay of core-excited states. The angular distribution has been measured of the first four vibrational components of the X state in the photon energy regions including the O 1s-->4a(1) and the O 1s-->2b(2) core excitations, and for different portions of the vibrational envelope of the B state in the photon energy region including the O 1s-->2b(2) core excitation. For the X state, a large relative spread in beta values of the different vibrational components is observed across both resonances. For the B state, a very different trend is observed for the high binding energy side and the low binding energy side of the related spectral feature as a function of photon energy. A theoretical method based on the scattering K matrix has been used to calculate both the photoabsorption spectrum and the beta values, by taking both interference between direct and resonant photoemission and vibrational/lifetime interference into account. The numerical results show qualitative agreement with the trends detected in the experimental values and explain the conspicuous variations of the beta values primarily in terms of coupling between direct and resonant photoemission by interaction terms of different sign for different final vibrational states.

3.
Phys Rev Lett ; 84(13): 2826-9, 2000 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-11018952

RESUMO

By exploiting the core-excitation-induced dissociation of O2, we find that the Auger emission exhibits a Doppler-like energy shift. We show this to be a manifestation of localization of the core hole and propose that the problem of core-hole localization versus delocalization in core-hole spectroscopies may be resolved by considering the nature of the measurement.

4.
Phys Rev Lett ; 85(15): 3133-6, 2000 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-11019284

RESUMO

The femtosecond dissociation of HCl after core excitation has been studied through the resonant Auger decay. The spectra contain contributions from decay occurring at both "molecular" and "atomic" internuclear distances. We have observed a new interference mechanism in these spectra: An atomic spectral line develops into a negative spectral contribution, a "hole," when detuning the excitation energy from the maximum of the Cl2p(-1)sigma(*) resonance. Resonant x-ray scattering theory quantitatively explains this behavior as due to a novel destructive continuum-continuum interference between molecular and atomic contributions to the Auger decay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...